Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis.
نویسندگان
چکیده
Fluid shear stress alters the morphology and function of the endothelium by activating several kinases. Furthermore, shear stress potently inhibits apoptosis of endothelial cells. Since activation of Akt kinase has been shown to prevent cell death, we investigated the effects of shear stress on Akt phosphorylation. To test the hypothesis that shear stress interacts with the Akt kinase pathway, human umbilical venous endothelial cells were exposed to laminar shear stress (15 dyne/cm2). Western blotting with specific antibodies against the phosphorylated Akt demonstrated a time-dependent stimulation of Akt phosphorylation by shear stress with a maximal increase up to 6-fold after 1 hour of shear stress exposure. The stimulation of Akt phosphorylation by shear stress thereby seemed to be mediated by the phosphoinositide 3-OH kinase (PI3K), as evidenced by the significant inhibition of shear stress-induced Akt phosphorylation by the PI3K inhibitors wortmannin (20 nmol/L) and Ly294002 (10 micromol/L). In addition, pharmacological inhibition of P13K reduced the antiapoptotic effect of shear stress against growth factor depletion-induced apoptosis. Most important, overexpression of a dominant-negative Akt mutant significantly inhibited the apoptosis-suppressive effect of shear stress against serum depletion-induced apoptosis, thus indicating the direct involvement of shear stress-induced Akt phosphorylation for inhibition of endothelial cell apoptosis. These results define a novel shear stress-stimulated signal transduction pathway, namely, activation of the serine/threonine kinase Akt, which may contribute to the profound changes in endothelial morphology and function by shear stress.
منابع مشابه
VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملRole of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.
The application of fluid shear stress to endothelial cells elicits the formation of nitric oxide (NO) and phosphorylation of the endothelial NO synthase (eNOS). Shear stress also elicits the enhanced tyrosine phosphorylation of endothelial proteins, especially of those situated in the vicinity of cell-cell contacts. Since a major constituent of these endothelial cell-cell contacts is the platel...
متن کاملFlow shear stress stimulates Gab1 tyrosine phosphorylation to mediate protein kinase B and endothelial nitric-oxide synthase activation in endothelial cells.
Fluid shear stress generated by blood flow modulates endothelial cell function via specific intracellular signaling events. We showed previously that flow activated the phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) via Src kinase-dependent transactivation of vascular endothelial growth factor receptor 2 (VEGFR2). The scaffold protein Gab1 plays an impor...
متن کاملFlow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases.
Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS...
متن کاملAkt takes center stage in angiogenesis signaling.
The serine/threonine kinase Akt, also named protein kinase B, plays a central role in promoting the survival of a wide range of cell types.1 In this issue of Circulation Research, Kim et al2 report that angiopoietin-1 (Ang1) activates this survival kinase and thereby inhibits endothelial cell apoptosis. Ang1 was recently identified as the specific ligand for the Tie receptor family, which durin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 83 3 شماره
صفحات -
تاریخ انتشار 1998